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Abstract-This second part )f the paper uses the method devised in the part I to give explicit
solution to several cases of Cattaneo's plane contact problem. where a monotonically increasing
tangential load. starting frorr zero, is applied to the bodies in contact. with normal loading held
fixed. The method consists ire reducing the partial slip problem to a superposition of frictionless
normal contact problems, for which several results are available, including some recent cases studied
by the author. Therefore. a comprehensive set of results is given for single, multiple and periodical
contacts. 1998 Elsevier Sci':nce Ltd. All rights reserved.

1. INTRODUCTION

In part I of the paper we have given a general method for solving Cattaneo's plane contact
problem, using an analogy with an appropriate frictionless normal contact problem. Then,
several general solutions in quadrature, for the single, multiple and periodic contact area
were given.

In case the geometry of the contact is described by simple functions, the quadrature
becomes particularly simple. Indeed, there are many closed form solutions for the traction
distributions arising at the contact interface (whereas the complete solution of the contact
problem, i.e. including the interior stress field, presents in general greater difficulty).
especially for the case of the single contact area. However, even for this simplest case, apart
from the classical cases of tht: parabola, the flat and the wedge indenters, the solutions are
not easily available in the literature, and are not worked out explicitly. It is possible, instead,
to achieve a greater understanding of the parameters affecting the actual distribution of
tractions and, therefore, infer the characteristics of the transmission of loads, and so the
strength or fracture mechani,~s of the contact, by working out solutions for more general
configurations. In recent papers, for example. the author has treated cases of profile not
defined by a single function, ~;uch as a wedge with rounded tip (Ciavarella et al., 1997a, b),
or a flat punch with rounded corners (Ciavarella et al.. 1997a, b), and the same technique
has been applied to a general symmetrical spline profile (Ciavarella et al., 1997c). i.e.
piecewise continuous or discontinuous§ linear or quadratic, profile.

Regarding multiple contacts, moreover, many results are little known (like many
solutions given in the book by Scthayerman, 1949). For the multiple contact problem, in
particular, closed form solutions are possible at least for the simplest cases of two parabolic
punches (Gladwell, 1980), or two flat punches (Scthayerman, 1949).

Finally, for periodic cO:ltacts, the solution in many cases is also possible in closed
form, at least for sinusoidal, :;quared sinusoidal or periodically flat indenter (Scthayerman,
1949). We, therefore, collect these solutions, and give the explicit transformation in term
of Cattaneo's problem, showing particular properties of the single cases. Apart from
calculating actual traction di~tributions,we will particularly concentrate on the much easier
calculation of the relation between tangential load Q, and the size of the stick zone Co In
general, here only the basic results are summarized, whereas the original papers should be
consulted for elucidation of wme of the contact laws that can be obtained in closed form.

t Transmitted by D. A. Hills.
t Permanent address: Dipartimento di Progettazione e Produzione Industriale. Politecnico di Bari, Viale

Japigia 182. 70126 Bari, Italy.
§ In which cases, logarithmic singularities are predicted in general in the discontinuities.
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2. SINGLE CONTACT AREAS

We refer to tht:: notation, and the results given in part I of the paper. In particular, eqn
(I-20)t gives the integral equation for obtaining the solution of the partial slip problem, in
terms of the correc:ive shear q*(O, whereas for the particular case of single contact area,
eqns (1-32) and (33) give the solution in quadrature. We specialize here these latter results
for some particular cases of geometry. Where not mentioned differently, we indicate with
c the half-width of the stick zone, whereas with a we indicate the half-width of the contact
zone.

2.1. Cylinder
As this case is s,) well known. we will just summarize the main results, using the general

procedure. For this geometry the standard Hertzian approximation is h'(x) = -kx, where
k is the reciprocal of the radius of curvature. The stick zone is centrally positioned and is
of half-width c. The dimensionless normalized shearing force (Q/fP), as a function of the
size of the stick zone (c/a), is found immediately from eqn (1-33), as

Q (C)2-= 1- -
fP a'

The solution for the tractions then reads, from eqn (1-32)

k /~2---' Ja t k ~
p(x) = - -..,; a -x- /, ,_--dt = - -va" -x-

nA -ava"-r(x-t) A

k ('I-'J' t k ~,-q*(x)//=--.jc--X" -~ .dt=--vc-x·
nA _,.jc2 -t-(x-t) A

(1)

(2)

(3)

p(x) and q*(~) have the well known elliptical shape. It is perhaps interesting to remark that
the first problem to be solved for the cylinder, somehow more complicated, was the rolling
problem considered by Carter (1926) well before the Cattaneo (1938) and Mindlin (1949)
analysis, even though the latter analysis are for general 3-D contacts. The Cattaneo problem
for the cylinder is not directly considered by Cataneo and Mindlin.

2.2. Flat punch
We have already shown that a partial slip solution cannot be predicted, for f3 = 0, for

this problem. If IQI < fP stick persists everywhere, whilst when IQI = fP slip spontaneously
envelopes the entire contact. However, the result merits more discussion, and we first re­
work the problem assuming that an explicit solution is possible with a simple formulation.
For f3 = 0, two cases are possible: the punch is rigid, and the half-plane is incompressible
(v = 0.5), or the punch is elastic, and the half-plane has elastic constants to satisfy exactly
the condition f3 = O. In the former case, the contact pressure distribution is then explicitly
and exactly given by (Hills et al., 1993, Section 2.8)

P
p(x) = - ---==.

nJa2 _x2
(4)

In the latter case, i.e. for the contact of two elastically similar half-planes, it must be
borne in mind that, if there is not enough support of material in the region adjacent to the
contact area (for example, if the punch is rectangular in shape), the half-plane assumption
can be questioned. However, as for the normal pressure distribution the main difference

t In the following we w;e the notation eqn (1-20) for egn (20) of part I of the paper, and so on.
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will be only in the asymptotics,t i.e. in the region very close to the edges, a partial slip
condition, if one exists, has tJ be limited to the case of a very small region of slip, therefore,
not altering much the indicated result. From a different point of view, apart from the
mathematical difficulty, the effect is very likely to be comparable with geometrical differences
from the perfectly-flat idealintion, including imperfections of manufacture. There is, there­
fore, no predictable partial slip solution, based on the initial geometry, and the assumptions
on the elasticity of the punch and half-plane.

2.3. Wedge, power-law andl'olynomial punches
Consider next a wedge-shaped punch having a profile such that hex) = Tv - alxl.

Regarding the relation between tangential load and size of the stick area, on' putting
t = c sin e, one has

fe h'(!)tdt Ie tdt

.
-----,:=:= = 2 I , = 2ccosel~!2 = 2c

_( ')C
2 _t2

0 y'c-t2

so that, from eqn (1-33)

Q c
fP = I-~.

The tractions are given by

rx ;-,-, fa ItI 2a I Ia Ip(x) = - ~v a" -x- . dt = - ~cosh- -
ITA -aJa2_t2(X-t) ITA X

* . . a '~22 fe Itl 2a _I Ic I-q (x)/f= -~vlc -x . , dt= -~cosh --
ITA -evl c2 - t-(x-t) ITA X

(5)

(6)

(7)

(8)

and it is possible also to work out the explicit displacement fields (Truman et al., 1995).
In general, for a punch of profile .'/ (which includes polynomials of any order), one

obtains (see Appendix I for (etails)

Q = 1_ (~)k
jP a

(9)

which is a very simple result. which could have been anticipated from self-similarity con­
siderations. Figure I summarizes the results obtained for punches of profile k = I, 2, 4, 6,
i.e. wedge, parabolic (Hertzian), and higher-order polynomials. It is interesting to note
again that for a wedge-punch the size of the slip zones varies linearly with the tangential
force transmitted, whilst for a high order punch the slip zone size varies weakly with light
shear loads, strongly with high shear loads. From a different point of view, this means that
a high order polynomial punch is hardly far from either full-stick or full-sliding conditions,
which is consistent with the limiting result that for a flat punch there is no predictable
partial slip condition, i.e. it has a 'on-off' behaviour in terms of full-stick, full slip. The full
solution in terms ofcontact pressure (and, therefore, also the shearing traction in the partial
slip regime), for any value of k, is reported in Appendix 1.

t In particular, the correct singularity predicted by infinitesimal linear theory of elasticity is lower than the
classical inverse square root. Also, it is worth remarking that for an external angle lower than a certain threshold,
the power-root singularity disappears, and only the logarithmic singularity, already predicted in half-plane
elasticity, is present. However, the difference is limited to a very small region close to the edge.
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Fig. 1. Relationship Q!fP - cia for power-law profilesk = 1.2,4,6. The case k = I is a sharp wedge
indenter, k = 2 is the parabolic Hertzian indenter.

2.4. Wedge with rowuled apex
Here we summarize results given in full detail in the paper (Ciavarella et al., 1997a, b),

to which the reader is referred for the derivation of the results, together with a complete
treatment of the strength of the contact. Consider a wedge-shaped punch, with rounded
tip, in contact with the half-plane. The function h'(x) is defined by

(a,
h'(x) = l-'Y.(X/b),

-'Y.,

-a:;;:; x:;;:; -b

-b:;;:; x:;;:; +b

+b:;;:; x:;;:; +a

(lO)

where a is the external angle of the wedge, which has to be small ifthe half-plane assumption
is to be justified, a is the half-width of the contact area, and b is the half-width of the
rounded part. Now, on substituting t = a sin 8, and defining b = a sin 80 :

aa (Sin280 )= - --- 8 - --- +sin28sin 8
0

0 2 0 .
(11 )

We need to distinguish between two cases: (i) when the stick zone lies entirely within the
rounded part of th~ indenter, i.e. c < h; (ii) when the stick zone extends into the linear
part, i.e. c > b. In tile first case (i) :



Generaliz(:d Cattaneo partial slip plane contact problem-II 2367

1.000.800.40 0.60
cIa

0.20

b I a =0.0,0.25, ... ,1.0

o.0 -t-----..--,----,-.,.-----r------r--,-----.-~

0.00

0.2

0.4

0.6

0.8

Fig. 2. Relationship QifP- cia for a wedge-shaped indenter with rounded apex, for different ratios
bla = 0,0.25.0.5.0.75, I, corresponding to the transition from sharp wedge to Hertzian indenter.

and we find

(13)

In the second case (ii). we find that:

sin2wo
w +---

Q (CSin8o ) 0 2
J]; = 1- asinwo sin 28

0
C> b

80 + '-2--

(14)

where b = c sin woo
The resulting behaviour in the partial slip regime is shown graphically in Fig. 2, for

bla = 0,0.25,0.5, 0.75,1. It may be appreciated that the response is very smooth at the
transition in the function profile. Indeed, we did expect a smooth transition from the linear
to the parabolic behaviour, but clearly different from the one that can be obtained with a
smooth transition of a power-law punch for k moving from k = 1 to k = 2.

As regarding the traction distribution, it may be shown that the pressure is given by
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nA (8) I! 8+80 8-80 I 8 cos8 sin8 ISin(8-80 )1-p = n tan--tan-- -2 0-.-- ---In
a. 2 2 sm80 sin 80 sin(8+80 )

(15)

where - nl2 ~ 8 ~ n12, which corresponds to the physical region - a ~ x = b sin 8;
sin 80 ~ a. The contact area dimension a is given by equilibrium

A~ = _b_ (Sin 280 +8 ).
• J 8 2 0a. sm- 0

(16)

In the partial slip regime, for c < b, the corrective shear q*(x) has the Cattaneo-Mindlin
shape for a parabolic punch, whereas in the case c > b, mapping the region - c ~ x ~ c by
means of the relation x = b sin wi sin wo, one has

nA I w+wo w-wol cosw sinw ISin(W-Wo)!- - q* (w)/! = In tan--- tan---- - 2wo-.-~ - -.--In . .
a. 2 2 smwo smwo sm(w+wo)

(17)

2.5. Flat punch with rounded corners
Consider a flat punch, with rounded corners, in contact with the half-plane. The

function h/(x) is described by

so that

r- (b+x)IR,

h'(x) = )0,
l- (x-b)IR,

-a ~ x ~ -b

-h ~ x ~ +h

+h ~ x ~ +a

(18)

2 2 (n Wo sin 2wo)= --c --------
R 4 2 4

(19)

on substituting t = csin 8, and defining b = c sin wo. In this configuration, only a partial
slip case with stick zone greater than the flat central part is possible, i.e. c > a. The integral
related to the entire contact area can be calculated from eqn (1-33), formally substituting
c = a, i.e. 80 to Wo, and a to c, obtaining

Q (C)2 n - 2wo - sin 2wo
fP= 1- ~ n-280 -sin280 '

c h
->­
a a

(20)

c b
- <-.
a a

(21)
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Fig. 3. Relationship QlfP- cia for a flat indenter with rounded corners. for different ratios
bja = 0,0.25,0.5,0.75. I, ccrresponding to the transition from Hertzian indenter, to flat punch.

This result is plotted in Fig. 3, where it may be appreciated again that the transition from
the Hertzian case (bla = 0) to the limit flat punch is not smooth, as in the case of the
transition through a polynomial punch k = 2 to k ~ co. Moreover, by comparison with
the previous case of the rounded wedge, there is more influence on the load application, as
full sliding only occurs when the slip zone has reached the transition point in the profile. It
is worth remarking, as a consequence, that wear cannot occur in the flat part of the indenter
if the punch is in the partial slip regime.

As regards the traction cistribution, let us start by considering the pressure. Mapping
the physical contact region - a ~ x ~ a, (a = bl sin eo) by x = b sin el sin eo, the dimen­
sionless pressure distribution is

bp(e)
p

21n
n-2eo -sin2eo

{ [I

Sin(e+eo)!SinOI e+eo e-eo ISinoO
]}

X (n-2eo)·~ose+ln sinCe-eo) tan-2-tan-2- . (22)

Considering b as a known geometrical quantity, the angle 80 is given by the load Pas

(23)

Moving to partial slip regime (c > b), the dimensionless corrective shearing distribution is
given by mapping the physical stick region - c ~ x ~ c, (c = bl sin wo) by x = b sin w!
sin W o :
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bq*(8) 21n
-~ = n - 20-)o---si-n-2-w-o

{ [I sin(w+u.~() I'inwI w+wo w-Wo \SinWo]}
X (n- 2wo)cosw+ln . ( ) tan--

2
-tan--

2
- .

Sill w-wo
(24)

2.6. Truncated power-law punch
Consider, now, 1 power-law punch with a central flat region This is an ideal vehicle to

show that the relation Q/.fP, size of stick zone, is much easier to calculate than the pressure
distribution itself. In fact, we failed to obtain an analytical solution for the tractions.
Consider a function h'(x) described by

Then

[CkIX!k-l,

h'(x) = )0,

l-Cklxl k

-a~x~-b

-b ~ x ~ +b.

+b ~ x ,,; +a

(25)

fe !!Jt)~ - .kIl ~~.,- - - 2Ck( __ .
/ ~2 2 ,2-e y ( -t hieJl-T

Therefore, the stick zone, which must lie in the interval c/a > b/a, is given by

(26)

(27)

c b
->­
a a

(28)

Q
fP = I,

c b
-<­
a a

(29)

where the integrals can be computed in terms of special functions (details are given in
Appendix 2).

2.7. Spline profile
Lastly, in this ~,ection of symmetrical profiles, consider a profile such that the function

h'(x) is defined in the generic region [-b, -a] U [a, b] by

h'(x) = mx+D, -b"; x,,; -a

h'(x) = mx-D, +a ~ x ~ +b (30)

where

h'(b)-h'(a)
D = h'(a)+ma. (31 )m=-

b-a
,
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On defining d, the dimension of the contact area sin 0 = xld sin 0 = aid sin 0b = bid
considering a case with n sections of the profile, it ~ay be pro~e'd (Ci;varella' et al., 1997c)
the solution for the pressure is given by

(0) __1 n~1[2 d(O 6') 0 d" 01 I sin(O+O;) Sin(O-Oi+,)!p - L. m+ 1 - . cos + m ~m n ------ --------------
nA /~O '" I sin(O+Oi+d sin(O-O;)

+ D In I (cos 0 -cosOi)(cos 0 +cos Oi+ J) IJ (32)
/ (cosO-COSOi+I)(COSO+cosO;)

and the total load is

(33)

where On = n12, as it corresponds to the contact area edge.
In the particular case there is a flat central area, [- ao,ao], the summation has to start

from the corresponding angle 00 , Then, the above result continue to apply, but expression
refers to n + I sections.

On moving to the partial slip case, define e the dimension of the contact area, by
sin W = x/e, sin W a = ale, sin:uh = ble, considering a case with n* < n sections of the profile
that are in the stick zone, the corrective shear is given by

I n*-I[ . I sin(w+w;) sin(w-wi+')I-q*(x)/f= -A L 2mic(w+ 1 -w;)cosw+micsmwln . -------:.----
n i~O sm(w+wi+J) sm(W-Wi)

I
I

(COSW-COSWi)(COSW+COSWi+I)IJ+D n -----------------'---
I (cosw-cosWi+J)(cosw+coswi)

and the corrective load is given by

(34)

(35)

where W n = n/2, as it corresponds to the stick area edge.

2.8. A non-symmetrical wedge
To present an example of the treatment of non-symmetrical contacts, where the centre

of the contact area is unknown a priori, we summarize here results for the simplest case of
a wedge non-symmetrical with respect to y-axes. A full account of the derivation of the
results below, and more general treatment of non-symmetrical contact, can be found in the
paper (Ciavarella and Demelio, 1997).

Let us consider a case or a non-symmetrical wedge where the geometry is such that

r-L, x~O
h'(x) =

l-k+, 0 ~ x
(36)

where k is related to the external angle of the wedge, i.e. k+ = 0, k_ = - 0 for a symmetrical
wedge. Note that the case wi:h rotation is readily incorporated into the value of k+, k_.
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Now, define

we find
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x = ~+b, ~ = acos ¢, 15 = -acos ¢o

I . ¢+¢olsm~--

a . 2
p(¢) = - n)k+-k_)lnl· ¢-¢o·

sm--I
2

(37)

(38)

The last two formul2s determinep(x) in the range -a+15 < x < a+15.
Substituting now in the conditions for p(x) at the edge to be zero, and using r = a cos ¢,

b = - a cos ¢o, we find

nk_
¢o = k -k '

- +

AP
a=

k k
. nk( - )sm~~-~

~ - k_ -k+

(39)

Substituting in the relation for M, we obtain

P 1
M = Pb+ ~acos¢o = -P15

2 2
(40)

since a cos ¢o = - 15. Thus, for equilibrium it is necessary that the resultant P is displaced
of x = 1/215 if no rotation has to occur. Clearly, in the limit () = a, one contact edge reaches
the apex of the wedge, but this limit case is not meaningful, as it may be shown to correspond
to a flat punch with a linear profile on one side, so that the other edge is undefined.
Therefore, the condition k+ > 0, k_ < °has to be added for the solution to be meaningful.

On moving to the partial slip regime, let us define

we find

x = l1+b*, 11 = CCOSW, b* = -COSWo

I
Sin~)+WOI

-q*(x)/f= - ~(k+ -L) In __2_ ..
nA W-Wo;

Isin---I
2

(41)

(42)

The last two formulae determine q*(x) in the range -c+15* < x < c+15*.
Substituting now in the conditions for q*(x) at the edge of the stick area to be zero,

one obtains

nk_
Wo = k -k '

- +
(43)

The fact that Wo = .Po was expected, as the profile is self-similar, so that b*/b = cia.

3. MULTIPLE CONTACTS

On moving to the case where the contact area is composed by a (finite) number of
regions of the x-axes, i.e. the case of a multiply connected contact area, the solution becomes
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immediately more complica ted. Gladwell (1980) presents a solution for the case of two
parabolic punches, whereas Schtayerman (1949) gives solutions to the cases of two flat
areas of different height. Here, we recollect the latter solution, whereas for the general case,
the use of the analytical solution, given in part I of the paper (specifically, Appendix I)
becomes quite cumbersome. Therefore, as perhaps an approximate numerical scheme is
satisfactory for a number of cases, we present a simple numerical scheme considering the
interaction between different areas in a simplified first-order approximation.

3.1. Two fiat areas
If the profile is such that h is constant over two areas, say of equal size, and consider

the case when the punch is brought into contact by a rigid vertical body motion, so that

h(x) = {Tr
,

Tr+y,

-b:::;x:::;-a

+a:::; x:::; +b
(44)

The solution, when the contact is extended to both areas, is (Scthayerman, 1949)

{
-b:::; x:::; -a

+a:::;x:::;+b
(45)

where

nby
Co = - 2AK(k) ' k = alb (46)

and K(k) is the elliptic integral of the first kind. The pressure is clearly higher in the lower
surface. During normal loading, two different phases can be detected. At first, only the
lower surface is in contact, and the pressure is given by the flat punch case, eqn (4); when
the upper surface comes inte contact, the pressure is given by eqn (46), and it is clearly not
symmetrical anymore (eqn 0-9) can be applied to calculate the moment). This corresponds,
in the Cattaneo partial slip p~oblem, to the fact that there are two phases before full sliding:
at first application of the tangential load, there is full stick; then, as Q*/f reaches the value
corresponding to the normal load when the upper surface is in incipient contact, there is
full slip on that surface, whereas full-stick continues in the lower surface. Only at IQI = fP
does the lower surface slip suddenly.

4. PERIODIC CONTACTS

The case of periodic contact is of great engineering interest, in that it encompasses the
characteristics of rough contacts, as long as it can be assumed that the roughness has some
sort of deterministic periodicity (in the more general case, still a Fourier analysis of the
roughness gives a spectrum of heights of the asperities as a function of the wavelengths).
Therefore, the elementary case of a sine profile gives an insight into the simplest way in on
this problem. The partial sLp solution is here provided as an extension, and indeed this
permits us to achieve a better understanding of the partial slip regime for these class of
contacts.

4. I. Sine wave profile
When an infinite number of punches acts on the half-plane, it is impossible to consider

total normal or tangential forces, and it is even naive (in plane problems) to compute the
rigid body motion. We may, therefore, consider only the distribution of tangential traction,
and the average pressure (equivalently, we can define the total load per contact area). For
a profile in the form of a cosine wave
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Fig. 4. Relationship (j/lp - c/a for a periodic contact, for different level of load. i.e.
2a/A = 0.2,0.4, 0.6,IUs, 1. corresponding to the transition from far interaction, to complete contact

of the half-planes.

. (2nX).II (x) = Acos -T (47)

in contact with a half-plane (f2(X) = 0), Westergaard's solution applies [see Hills et al.,
(1993) Section 14.2, for more details on the derivation], with the outcome

2-
p(x) =~~ [sin2(na/),) -sin2(nx/),)] I

2
slw(na/A)

applied over the regiols Ix-nlcl < a, withp(x) = 0 outside these regions, and

(48)

j5 = 2nAsin2(na/A)/AIe. (49)

This permits the determination of the size of the contact area a. For light loads (2a/), less
than about 0.4) a Hertzian contact pressure distribution results at each asperity whose
curvature we may write as k = 4n2A/A\ and the interaction is negligible. The other limiting
case, of an extremely heavy load, 2a/A = 1, gives a sinusoidally varying continuous pressure
distribution. These formulae can be directly processed to give the solution to Cattaneo's
partial slip problem. The average pressure j5 transforms into an average corrective shearing
traction distribution q*, which determines the size c of the stick zone, and

q: = 1_ (s~n(nc~~»)2
fp sm(na/ t.)

(50)

(51 )

and the shearing tracti·Jns are given by

Jfp(x)+ . :a*_._,[sin 2(nc/Ie)-sin 2(nx/le)t 2 XESSlick

q(x) = l. smC(nc/JI.)

fb(x) x E Sshp

Figure 4 summarizes the results obtained for the ratios 2a/1e = 0.2,0.4,0.6,0.8,1.0, i.e.
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from a practically Hertzian case (no interaction due to contact wide apart), to the complete
contact of the half-planes. it is interesting to note that the variation is not particularly
great, as compared to the variation due to different profiles that we have discussed so far.
Of course, the effect here is interaction, and if the profiles are different from a sinusoidal
profile, the combined effect~; may sum, although it is not possible in general to achieve
analytical results. Note that in the case where the load is increased to more than what is
needed to full contact, there is a uniform pressure to add to eqn (48). In this case, on
applying a tangential load, it is clear that full stick will occur at first, and only when the
tangential load has reached the point corresponding to the loose of full contact, the partial
slip condition hold.

4.2. Flat periodic contact
Here the solution corresponds to the frictionless normal contact in the case of a

periodical set of flat surface:; of equal height, i.e. h'(x) = 0, over the range am ~ X ~ bm ,

(m = I, ... ,n), where the pe-iod is equal to only one contact area, n = I, I/(x) = 0, over
1/2 - a ~ x ~ 1/2 +a. The solution is

=====,Inx na
I~cos,-cos-T

-a ~ x ~ a (52)

where P is the load per contact area. Note that in the limit when 1= 2a, the shearing
distribution goes towards the uniform limit.

Moving to the partial slip configuration, as the punch is composed ofa infinite number
of flat areas of equal heights. then a partial slip solution is not possible, from the general
results already obtained. The contact will be either in full stick, or full slip regime, and the
shearing will be always proportional to the pressure as given above, i.e.

, nx
(

I' Qy'2cos,

q 2+x)= - j:c'_===' -a~x~a
, nx na

I cos- -cos ---
I I

(53)

where Q is the total tangential load per contact area. As soon as IQI =IP, the full slip
conditions arise simultaneously in the entire contact area.

4.3. Sine squared wave profile
For a profile in the form of a squared cosine wave

,(nx)II (x) = ~ cos" 'I'

in contact with a half-plane U2(X) = 0), Scthayerman (1949) gives the solution

(54)

p G+x) = y/2L~ cos (n~~) [cos C~~)-cosc~a)J2 -a < x < a (55)

where



2376 M. Ciavarella

a I Ao
-;- = -arcsin- (56)
Ie n ),

and

A,o = f{:~. (57)
Jl n

When Ao!). = 1, then there is full contact. Moving to the partial slip case, as usual the
solution is obtained llsing a corrective shearing distribution equal to

where

and

(
}) A Q* (nx) [(2nX) (2nC)Jl!2-q* ~ +x 0= J2;.0 ;:;;-cos T cos -;~ -cos T '

c I . ).~
- = - arCSlll ­
A n A

A.~ = J!iQ*,A .
Ie n}

5. CONCLUSIONS

-C < x < C (58)

(59)

(60)

Cattaneo's partial slip contact has been considered and new solutions developed, using
the method proposl~d in Part I of the paper. The range of analytical results covers a
vast range of configurations of engineering interest. For single contact area: punches of
polynomial or power-law profile, wedge with rounded apex, flat punch with rounded corners
and, more generally, a spline approximation of the profile; finally a truncated power-law
punch. For multipl~ contacts, the case of two flat areas of different heights is treated.
For periodic contacts: a sine-wave, a sine squared, and periodic flat profiles have been
considered.

To treat more general contact problems, the results of part I of the paper permit to
solve the Cattaneo partial problem as a frictionless normal contact: therefore, either the
solutions in quadrature given in Part I of the paper has to be solved numerically, or a more
classical numericallechnique to solve frictionless normal contact has to be used.
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APPENDIX I

SolUlion/or a punch o/profile xk

Consider a punch of power-law profile Ii (x) = C1xl" including polynomial or any order, in contact with a
half-plane. The function hex) is defined by

h'(x) = -sign(x)Cklxl'-I.

Then, the pressure can be obtainec as

Or ~ [j'O Itl'-' dt f" 1tI'-' dt ]p(x) =-- !a--x- -
ITA 'v -" fi' -I'(t-X) .0;-:;' -I'(t- x)

Ck I~-, [fa t' dt ]= - 2 - I a~ - x- .
ITA 'v 0 J a' - t' (T' - x')

To calculate the normal load

P= _ Ck[fO 1tI'~'td~ -f"III:-,'ldt]
A -aJa"-r 0 v a-- I '

= 2 Ck fa I'dl _.

A Jo la'-I'
V

Substituting x = as, and t = ar, and using the resultt

one has for lsi < I,

where ,F,(.,.;.;, z) is the Gauss hyp(:rgeometric function of argument z, and

t Mathematica Vol. 3.0, Wolfn.m Research, Champain, Illinois, U.S.A.

(AI)

(A2)

(A3)

(M)

(AS)

(A6)

(A7)

(A8)

(A9)
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(Ala)

For particular values of k, simplified results are possible. and in particular it is evident that for k = 2 the classical
Hertzian parabolic case is recovered.

APPENDIX 2

Truncated power-law punch
We note the resultst.

where ,F] is the Gauss hypergeometric function. From there, the values of relation normal load--{;ontact area, or
tangential load-stick zaut can be calculated in partial slip (as usual, only the case for which cia :> bia can be
considered)

c b
-:>­
a a

(All)

whereas QjP = l,e':; b. To remark the case of a truncated parabolic punch, that can arise for example on a
Hertzian punch, whose pr,)file has been flattened in the middle for example by wear. In that case, it is possible to
use the result

2F, (~'-2
3

; ~;.::) = - ~,3 -:;- lvlzv l-.::-arcsin J.::].
- ~ 2.::]'~

t Mathematica Vol. 3.0, Wolfram Research, Champain, !I\inois, U.S.A.

(AI2)


